

Lung Ablation: Year in Review

Robert Suh, MD

Disclosures

Robert Suh: Consultant – Boston Scientific, NeuWave Medical, Varian; Speakers' Bureau – Boehringer Ingelheim

Brand names are included in this presentation for participant clarification purposes only. No product promotion should be inferred.

SIR Position Statement: NSCLC and Metastatic Disease to the Lungs

LEVEL OF EVIDENCE

A HIGH QUALITY EVIDENCE

Types of Evidence
Multiple RCTs
Systematic reviews or meta-analyses of high-quality RCTs
RCT data supported by high-quality registry studies

Characteristics of Evidence
Homogeneity of RCT study population
Intention-to-treat principle maintained
Appropriate blinding
Precision of data (narrow CIs)
Appropriate follow-up (consider duration and patients lost to follow-up)
Appropriate statistical design

B MODERATE QUALITY EVIDENCE—Randomized Study Design

Types of Evidence
≥ 1 RCTs
Systematic reviews or meta-analyses of moderate-quality RCTs

Characteristics of Evidence
RCTs with limitations (eg, < 80% follow-up, heterogeneity of patient population, bias, etc)
Imprecision of data (small sample size, wide CIs)

C MODERATE QUALITY EVIDENCE—Nonrandomized Study Design

Types of Evidence
Nonrandomized trials
Observational or registry studies
Systematic reviews or meta-analyses of moderate quality studies

Characteristics of Evidence
Nonrandomized controlled cohort study
Observational study with dramatic effect
Outcomes research
Ecological study

D LIMITED QUALITY EVIDENCE

Types of Evidence
Observational or registry studies with limited design and execution
Systematic reviews or meta-analyses of studies limited by design and execution

Characteristics of Evidence
Case series
Case-control studies
Historically controlled studies

E EXPERT OPINION

Types of Evidence
Expert consensus based on clinical practice

Characteristics of Evidence
Expert opinion without explicit critical appraisal or based on physiology, bench research, or “first principles”

STRENGTH OF RECOMMENDATION

Strong Recommendation

Supported by high quality evidence for or against recommendation

Moderate Recommendation

Supported by moderate quality evidence for or against recommendation; new research may be able to provide additional context

Weak Recommendation

Supported by weak quality evidence for or against recommendation; new research likely to provide additional context

No Recommendation

Insufficient evidence in the literature to support or refute recommendation

CI = confidence interval; RCT = randomized controlled trial.

SIR Position Statement: NSCLC and Metastatic Disease to the Lungs

LEVEL OF EVIDENCE

A HIGH QUALITY EVIDENCE

- Types of Evidence
Multiple RCTs
Systematic reviews or meta-analyses of high-quality RCTs
RCT data supported by high-quality registry studies

- Characteristics of Evidence**
Homogeneity of RCT study population
Intention-to-treat principle maintained
Appropriate blinding
Precision of data (narrow CIs)
Appropriate follow-up (consider duration and patients lost to follow-up)
Appropriate statistical design

B MODERATE QUALITY EVIDENCE—Randomized Study Design

- Types of Evidence
≥ 1 RCTs
Systematic reviews or meta-analyses of moderate-quality RCTs

- Characteristics of Evidence**
RCTs with limitations (e.g., < 80% follow-up, heterogeneity of patient population, bias, etc)
Imprecision of data (small sample size, wide CIs)

C MODERATE QUALITY EVIDENCE—Nonrandomized Study Design

- Types of Evidence
Nonrandomized trials
Observational or registry studies
Systematic reviews or meta-analyses of moderate quality studies

- Characteristics of Evidence**
Nonrandomized controlled cohort study
Observational study with dramatic effect
Outcomes research
Ecological study

D LIMITED QUALITY EVIDENCE

- Types of Evidence
Observational or registry studies with limited design and execution
Systematic reviews or meta-analyses of studies limited by design and execution

- Characteristics of Evidence**
Case series
Case-control studies
Historically controlled studies

E EXPERT OPINION

- Types of Evidence
Expert consensus based on clinical practice

- Characteristics of Evidence**
Expert opinion without explicit critical appraisal or based on physiology, bench research, or "first principles"

STRENGTH OF RECOMMENDATION

Strong Recommendation

- Supported by high quality evidence for or against recommendation

Moderate Recommendation

- Supported by moderate quality evidence for or against recommendation; new research may be able to provide additional context

Weak Recommendation

- Supported by weak quality evidence for or against recommendation; new research likely to provide additional context

No Recommendation

- Insufficient evidence in the literature to support or refute recommendation

CI = confidence interval; RCT = randomized controlled trial.

SIR Position Statement: NSCLC and Metastatic Disease to the Lungs

Recommendation	Qualifications	LOE	SOR
Stage IA	Safe and effective treatment with minimal complications and survival outcomes comparable to SBRT and sublobar resection	C	Moderate
Recurrent	Safe and effective treatment option	C	Moderate

LOE: Level of Evidence

SOR: Strength of Recommendation

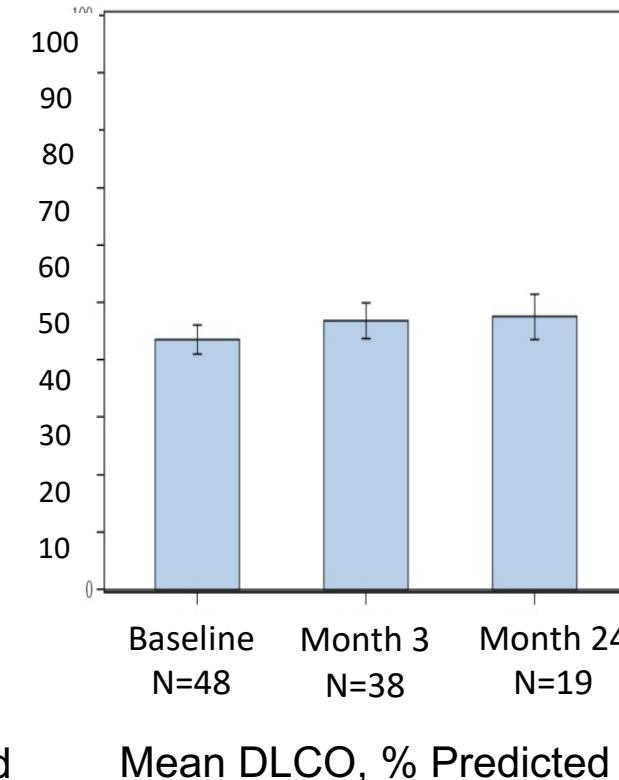
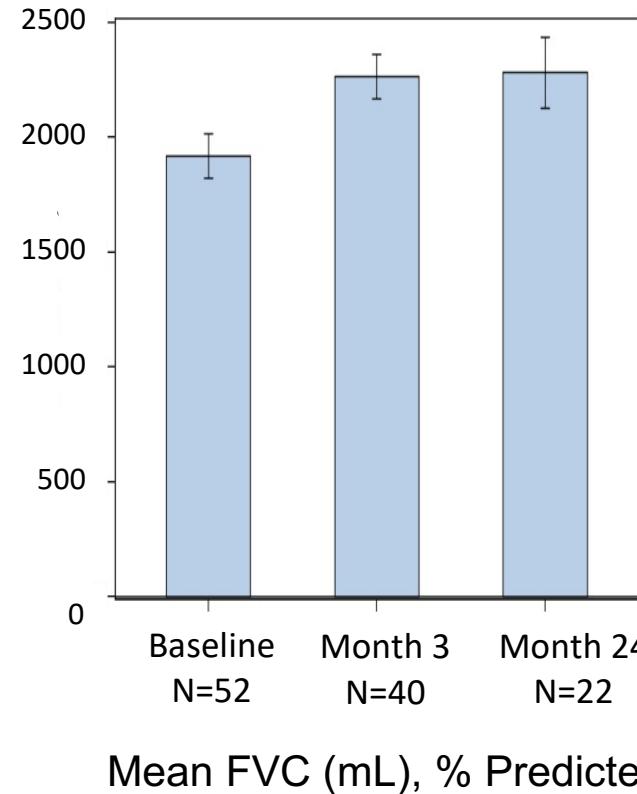
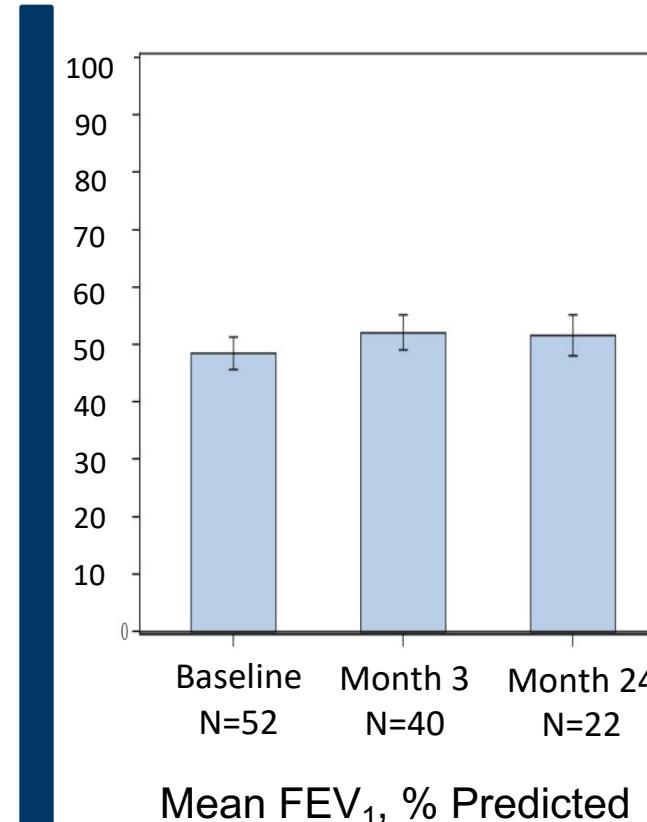
Ablation: Local Control Stage I NSCLC

		568 (694)	1-year	2-year	3-year	4-year	5-year	LC
radiofrequency	Simon 2007 ¹	71	78%	57%	36%	27%	27%	47%
	Huang 2010 ²	33	80%	46%			24%	76%
	Ambrogi 2011 ³	57	83%	62%	40%	32%	25%	41%
	Hiraki 2011 ⁴	50	94%	86%	74%	67%	61%	69%
	Kodama 2012 ⁵	44	98%		73%		55%	89%
	Palussiere 2014 ⁶	87	92%	78%	66%	63%	58%	79%
	Huang 2018 ⁷	50	96%	87%	67%		36%/1%	74%
	RAPTURE ⁸	33	93%	75%				88%
	ACOSOG Z4033 ⁹	51	86%	70%				60%
	Palussiere 2018 ¹⁰	42	92%	64%	58%			81%
microwave	Yang 2014 ¹¹	47	89%	63%	43%	37%	16%	48%
	Han 2019 ¹²	63	97%	93%	63%	54%	33%	64%
	Nance 2021 ¹³	21	68%	62%			46%	90%
	Moore 2015 ¹⁴	45	89%		78%		68%	89%

- ¹Simon et al. *Radiology* 2007; 18:1264-1269.
²Huang et al. *Eur J CT Surg* 2010; 39:348-351.
³Ambrogi et al. *J Thorac Oncol* 2011; 6:2044-2051.
⁴Hiraki et al. *J Thorac CV Surg* 2011; 142:24-30.
⁵Kodama et al. *CVIR* 2012; 35:563-569.
⁶Palussiere et al. *CVIR* 2015; 38:160-166.
⁷Huang et al. *Int J Surg* 2018; 53:143-150.
⁸Lencioni et al. *Lancet Oncol* 2008; 9:621-628.
⁹Dupuy et al. *Cancer* 2015; 121:3491-3498.
¹⁰Palussiere et al. *J Cardiovasc Surg* 2018; 13:91.
¹¹Yang et al. *J Surg Onc* 2014; 110:758-763.
¹²Han et al. *Thoracic Cancer* 2019; 10:2236-2242.
¹³Nance et al. *J Clin Imaging Sci* 2021;11:1-9.
¹⁴Moore et al. *JVIR* 2015; 26:312-319.
¹⁵Chan et al. *J Thorac Imaging* 2011; 26:18-26.
¹⁶Jiang et al. *Ann Thorac Med* 2018; 13:243-250.
¹⁷Bi et al. *Int J R Bio Phys* 2016; 95:1378-1390.

71% : 78%¹⁵ : 81%¹⁶

SBRT : 86%¹⁷




SIR Position Statement: NSCLC and Metastatic Disease to the Lungs

Recommendation	Qualifications	LOE	SOR
Stage IA	Safe and effective treatment with minimal complications and survival outcomes comparable to SBRT and sublobar resection	C	Moderate
Recurrent	Safe and effective treatment option	C	Moderate
Lung function	Should be considered alongside surgical resection and SBRT in patients who require preservation of lung parenchyma function	C	Moderate

LOE: Level of Evidence

SOR: Strength of Recommendation

Ablation: Lung Preservation

FVC improved > 400 mL 20% after RFA at 3 mos ($p = 0.02$) and 24 mos ($p = 0.01$)

SIR Position Statement: NSCLC and Metastatic Disease to the Lungs

Recommendation	Qualifications	LOE	SOR
Stage IA	Safe and effective treatment with minimal complications and survival outcomes comparable to SBRT and sublobar resection	C	Moderate
Recurrent	Safe and effective treatment option	C	Moderate
Lung function	Should be considered alongside surgical resection and SBRT in patients who require preservation of lung parenchyma function	C	Moderate
Metastases	May be appropriate in some patients, including those with a limited number of small (≤ 3 cm) lung metastases	C	Weak
Energy modality	RFA, CA, and MWA are all appropriate modalities for image-guided thermal ablation of 1° or 2° lung tumors. The method of ablation should be determined by lesion characteristics and risk mitigation and should be left to the discretion of the operating physician.	C	Weak
Biopsy	Recommended before or during thermal ablation, when safe and possible	D	Weak

LOE: Level of Evidence

SOR: Strength of Recommendation

ABLATION GUIDELINES FOR NSCLC CARCINOMA

Source	Date	Ablation Guideline	Qualifications
NCCN	2020 ¹	Stage IA	Peripheral T1abc, N0: option for selected patients
		T1-3, N0	Option for selected patients
		Multiple	Asymptomatic solitary metachronous
		Locoregional recurrence	Option for selected patients
		Locoregional recurrence	Progression on EGFR or ALK therapy: option for selected patients
ACCP/STS	2012/3 ^{2,3}	Stage I	Peripheral, < 3cm
CIRSE	2020 ⁴	Stage I	Contraindications to surgery or stereotactic radiotherapy
			T1a, T1b: curative intent
		Other Stages	Contraindications to surgery or stereotactic radiotherapy
ESMO	2017 ⁵	Stage I	Contraindications to surgery or stereotactic radiotherapy
SIR	2021 ⁶	Stage IA	Safe and effective treatment with minimal complications and survival outcomes comparable to SBRT and sublobar resection
		Recurrent	Safe and effective treatment option

NCCN-National Comprehensive Cancer Network

ACCP-American College of Chest Physicians

STS-Society of Thoracic Surgeons

CIRSE-Cardiovascular & Interventional Radiology Society of Europe

ESMO-European Society for Medical Oncology

SIR-Society of Interventional Radiology

Lung Ablation: Year in Review

- For Stage I NSCLC, IGTA is a safe and effective treatment with minimal complications and survival outcomes comparable to SBRT and sublobar resection.
 - No significant sustained decline in FEV₁ and DLCO (high-risk)
- For recurrent NSCLC, IGTA is a safe and effective treatment option.
- For metastatic disease to the lungs, IGTA may be appropriate in some patients, including those with a limited number of small (≤ 3 cm) lung metastases.
- As RFA, CA, and MWA are all appropriate modalities, the method of ablation should be determined by lesion characteristics and risk mitigation and should be left to the discretion of the operating physician.
- Biopsy is recommended before or during thermal ablation, when safe and possible.

Lung Ablation: Year in Review

- *Future research in the form of comparative studies (either randomized controlled trials or well-conducted cohort studies) is required to strengthen the evidence base for image-guided thermal ablation in patients with inoperable stage I NSCLC, recurrent NSCLC, and metastatic lung disease. (Level of Evidence, E; Strength of Recommendation, Moderate)*