

Renal Ablation: Year in Review

Raul Uppot, MD

Division of Interventional Radiology
Massachusetts General Hospital

Disclosures

Grants/Research Support: ACR Innovations Grant

Other Financial/Material Support: Case Western equipment loan for AR Educational Modules

The following will be discussed for off-label use: VR/AR Equipment for IR training

*Brand names are included in this presentation for participant clarification purposes only.
No product promotion should be inferred.*

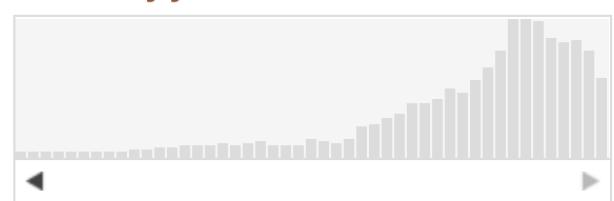
Methods

Reviewed PubMed

Format: Summary ▾ Sort by: Most Recent ▾ Per page: 20 ▾ Send to ▾ Filters: [Manage Filters](#)

October 2019-Present

Best matches for renal ablation:


[Renal Thermal Ablation Trends of American Urologists.](#)
Tan WP et al. J Endourol. (2020)

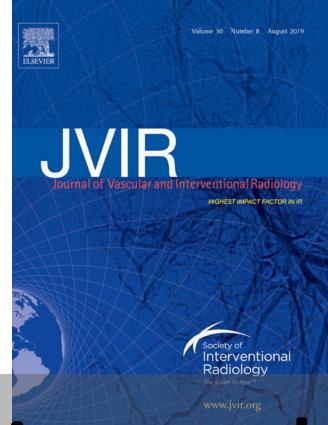
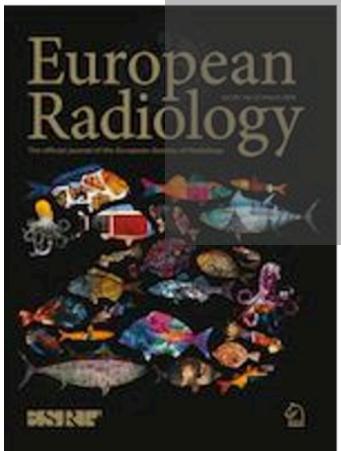
[Cone-Beam CT-Assisted Ablation of Renal Tumors: Preliminary Results.](#)
Monfardini L et al. Cardiovasc Intervent Radiol. (2019)

[Is There a Role for Combination, Single-Session Selective Transarterial Embolization and Microwave Ablation for Large Renal Masses?](#)
LaRussa S et al. Cardiovasc Intervent Radiol. (2020)

[Switch to our new best match sort order](#)

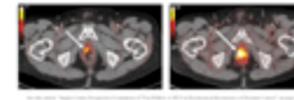
Results by year

[Download CSV](#)



Search results

Items: 1 to 20 of 4772

<< First < Prev Page of 239 [Next >](#) [Last >>](#)


PMC Images search for renal ablation

Reviewed All Major Journals

October 2019-Present

All

Images

News

Searched online content

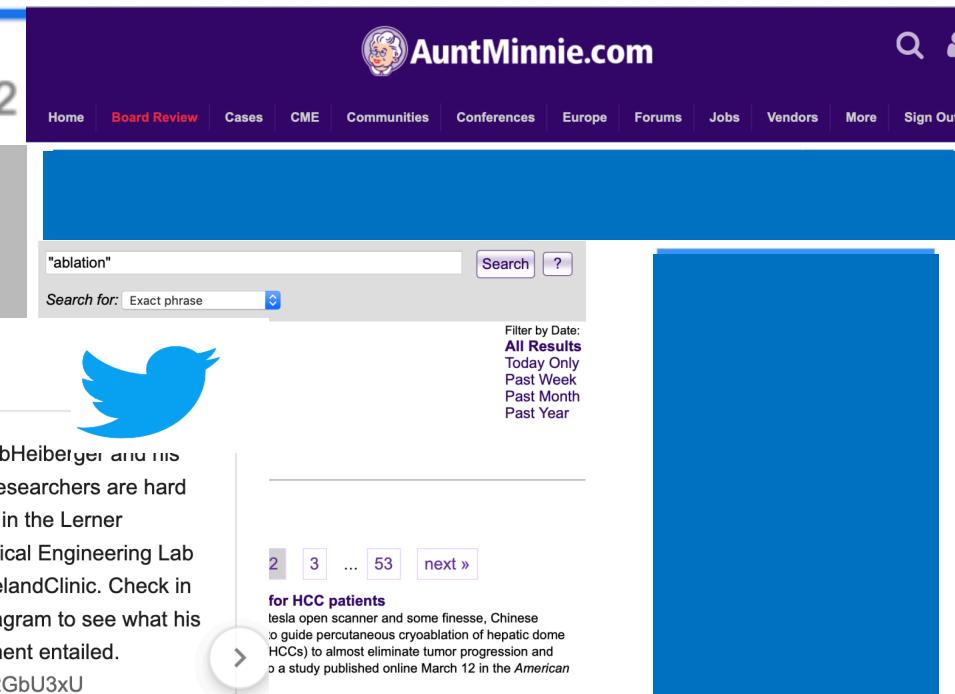
SEARCH

2203 results for "Renal ablation"

Renal ablation

Find venous research in @JVIRmedia—including a commentated 15-year analysis of Medicare procedures and providers in dialysis access and calculating dialysis access flow using DSA flow analyses—a potential future means of assessing procedural endpoints. buff.ly/2XY1ceh pic.twitter.com/7nlfDjm...

2 hours ago


Many women diagnosed with uterine #fibroids are not given the information they need to make informed decisions about their health. Hear from two women who researched their own treatment options and got their lives back with #UFE. #FibroidAwarenessMonth buff.ly/2I1MkiM pic.twitter.com/GCk9sFV...

6 hours ago

.@CalebHeiberg and his fellow researchers are hard at work in the Lerner Biomedical Engineering Lab @ClevelandClinic. Check in on Instagram to see what his experiment entailed. buff.ly/2GbU3xU pic.twitter.com/v7MlgzL...

1 day ago

About 6,780 results (0.22

A screenshot of the AuntMinnie.com website. At the top, there is a navigation bar with links for Home, Board Review, Cases, CME, Communities, Conferences, Europe, Forums, Jobs, Vendors, More, and Sign Out. Below the navigation bar, there is a search bar with the query "ablation" and a dropdown menu set to "Exact phrase". To the right of the search bar, there is a "Search" button and a help icon. On the far right, there is a "Filter by Date" section with options for "All Results", "Today Only", "Past Week", "Past Month", and "Past Year". The main content area displays a list of search results, with the first result being a tweet from the account SocInterventionalRad (@SIRspecialists) on Twitter. The tweet discusses renal ablation and includes a link to a study published in the American Journal of Roentgenology. The page also features a sidebar with a "for HCC patients" section and a "next »" button.

Methods

- Ranked all information in order of importance to the overall IR field and relevancy to clinical practice
- Organized into categories

One Slide Summary

- Intermediate-long term outcomes for ablation
- Increased application of microwave ablation
- Use of cone beam CT/combo embo + ablation
- New indications
- New imaging techniques

Intermediate-Long Term Outcomes

Percutaneous CT- and MRI-guided Cryoablation of cT1 Renal Cell Carcinoma: Intermediate- to Long-term Outcomes in 307 Patients

Sharath K. Bhagavatula, MD • Kemal Tuncali, MD • Paul B. Shyn, MD • Vincent M. Levesque, MS • Steven L. Chang, MD • Stuart G. Silverman, MD

- 307 patients (mean age: 68 years; 192 men).
- Median clinical follow-up = 95 months (range: 8–219 months)
- Median imaging follow-up lasted 41 months (range: 0–189 months)
- Primary and secondary technique efficacy were 96% and 99%, respectively.
- OS of 91%
- Overall adverse event rate was 14% (43 of 307)

Bhagavatula SK, et al. *Radiology*. 2020;296(3):687-695.

Comparing Outcomes for Patients with Clinical T1b Renal Cell Carcinoma Treated With Either Percutaneous Microwave Ablation or Surgery

Daniel D. Shapiro, Shane A. Wells, Sara L. Best, Sean P. Hedican, Timothy J. Ziemlewicz, Meghan G. Lubner, James Louis Hinshaw, Fred T. Lee Jr, David F. Jarrard, Kyle A. Richards, Tracy M. Downs, Glenn O. Allen, Stephen Y. Nakada, and Edwin Jason Abel

- cT1b tumors following MW, PN, or RN from 2000 to 2018
- 325 patients (40 MW, 74 PN, and 211 RN)
- Median follow-up was 34, 35, and 49 months following MW, PN, and RN, respectively
- Estimated 5-year local recurrence-free survival was 94.5% for MW vs. 97.9% for PN ($P = .34$) and 99.2% for RN ($P = .02$)
- Median length of hospitalization was shorter for MW compared to surgical patients (1 day vs. 4 days, $P <.0001$)

Shapiro DD, et al. *Urology*. 2020;135:88-94.

Percutaneous Thermal Ablation for Treatment of T1a Renal Cell Carcinomas

Sepideh Shakeri, MD^{a,*}, Steven S. Raman, MD^{a,b,1}

KEYWORDS

- Thermal ablation • Cryoablation • Radiofrequency ablation • Microwave ablation
- Percutaneous ablation • Minimal invasive surgery • Partial nephrectomy • Radical nephrectomy

- Long-term, single-center studies show excellent outcomes for T1a renal cell carcinoma (RCC), comparable to partial nephrectomy without affecting renal function and with much lower rates of complications
- Most studies are single-arm observational studies with short-term and intermediate follow-up
- No multicenter randomized controlled trials of multiple ablative modalities or comparison with partial nephrectomy

Shakeri S, Raman SS. *Radiol Clin North Am*. 2020;58(5):981-993.

The current status of thermal ablation in the management of T1b renal masses

BT Welch^a, PH Shah^b, RH Thompson^b and TD Atwell^a

^aDepartment of Radiology, Mayo Clinic, Rochester, MN, USA; ^bDepartment of Urology, Mayo Clinic, Rochester, MN, USA

ABSTRACT

The role of thermal ablation in the management of T1b renal masses is not well defined. The purpose of this review is to examine current evidence for cryoablation, radiofrequency ablation, and microwave ablation of T1b renal masses as well as review current AUA and EAU guidelines for thermal ablation of T1b masses. Given the size of these tumors, adjunctive maneuvers are often necessary to ensure patient safety and protect vital adjacent structures.

ARTICLE HISTORY

Received 12 February 2019
Revised 22 March 2019
Accepted 1 April 2019

KEYWORDS

Renal cell carcinoma; thermal ablation; cryoablation; radiofrequency ablation; microwave ablation

- Current evidence for ablation of T1b tumors is heterogeneous and limited by thermal modality utilized, number of probes/antennae used, and operator technique (laparoscopic vs. percutaneous, method of intraprocedural monitoring)
- AUA: Ablation for larger tumors may be considered in the presence of comorbidities that preclude the use of surgery
- EAU does not acknowledge a role for thermal ablation in tumors > 4 cm in size

Increased Use of Microwave Ablation

Percutaneous Microwave Ablation of Stage T1a Renal Cell Carcinoma: Intermediate Results on Safety, Technical Feasibility and Clinical Outcomes of 119 Tumors

Jianhai Guo, MD, Ronald S. Arellano, M.D.

[doi:10.2214/AJR.20.22818](https://doi.org/10.2214/AJR.20.22818)

Accepted: May 7, 2020

- 106 patients (70 men/36 women, overall mean age, 68.8 years \pm 9.2; range, 49-88 years) with 119 T1a renal cell carcinomas were treated with CT-guided microwave ablation
- Technical success was achieved for 100% of tumors
- Complete response was achieved in 101 (95.3%) patients and partial response was achieved in 5 (4.7%) patients
- Local progression-free survival was 100.0%, 92.8%, and 90.6% at 1, 2, and 3 years, respectively. Overall survival was 99.0%, 97.7%, and 94.6% at 1, 2, and 3 years, respectively
- Six patients (5.7%) had 7 complications (Clavien-Dindo Grade I, SIR category A, $n = 5$; Clavien-Dindo Grade III, SIR category B, $n = 2$) within 30 days of the procedure

Guo J, Arellano RS. AJR Am J Roentgenol. 2020;10.2214/AJR.20.22818.

Percutaneous Microwave Ablation Versus Cryoablation in the Treatment of T1a Renal Tumors

Francesco De Cobelli^{1,2,3} · Maurizio Papa⁴ · Marta Panzeri¹ · Michele Colombo¹ ·
Stephanie Steidler¹ · Alessandro Ambrosi² · Roberta Cao¹ · Simone Gusmini¹ ·
Paolo Marra¹ · Umberto Capitanio^{5,6} · Roberto Bertini^{5,6} · Massimo Venturini¹ ·
Andrea Losa⁷ · Franco Gaboardi⁷ · Francesco Montorsi^{2,5,6} · Gianpiero Cardone⁴

- 51 nodules were treated with Cryo and 32 with MWA (44 and 28 patients, respectively)
- No statistical differences were observed following Cryo or MWA in median tumor size ($p = 0.6$), mRENAL ($p = 0.1$) or technical success ($p = 0.8$)
- Median procedure time was significantly lower using microwave ablation ($p = 0.003$)
- Renal function was preserved regardless of techniques
- Disease recurrence was observed in 3/47 and in 1/30 treated nodules in the Cryo and MWA groups, respectively, without reaching statistical significance ($p = 0.06$)

Cone Beam CT/ Combo Embo + Ablation

Cone-Beam CT-Assisted Ablation of Renal Tumors: Preliminary Results

Lorenzo Monfardini¹ · Nicolò Gennaro² · Paolo Della Vigna³ · Guido Bonomo³ ·
Gianluca Varano³ · Daniele Maiettini³ · Luke Bonello⁴ · Luigi Solbiati^{5,6} ·
Franco Orsi³ · Giovanni Mauri³

- 14 patients (mean age 69, range 54–83, 7F, 7M) underwent 21 renal ablations for histologically proven renal cell carcinoma (RCC)
- All treatments were performed with ultrasound (US) and CBCT guidance under general anesthesia in a dedicated angiography room setting
- CBCT was proven to be technically successful in all 21 procedures to guide or assist tumor ablation
- A primary technical efficacy of thermal ablation was achieved in 19/21 ablations (90.1%) at 1 month
- Mean procedure duration was 100.2 min. (range 160–64).
- Mean length of hospital stay was 2 days (range 1–10 days)

Is There a Role for Combination, Single-Session Selective Transarterial Embolization and Microwave Ablation for Large Renal Masses?

Samuel LaRussa³ · Rand Wilcox Vanden Berg¹ · Kiersten M. Craig¹ ·
David C. Madoff^{2,4} · Timothy D. McClure^{1,2}

- 11 patients were identified meeting inclusion criteria
- Mean age 73 years, 64% male
- 9 tumors were identified as clear cell carcinoma; one as papillary carcinoma; one as an oncocytic neoplasm
- Average tumor size was 4.5 cm (2.7–8.3)
- Successful ablation with a 5 mm margin was achieved in all patients; ablation & embolization performed on same day
- Average follow-up was 419.5 days (range 27–747)

Single-session transarterial embolization and microwave ablation is technically feasible, safe, and efficacious in treating large renal tumors.

Table 1 Patient demographics and tumor characteristics

Characteristics	
Total patients, no.	11
Age, mean, years	73 ± 9.6
BMI, mean	26.5 ± 4.5
Smoking status, no. (%)	
Never	6 (55)
Former	5 (45)
Sex, no. (%)	
Female	4 (36)
Male	7 (64)
Race, no. (%)	
White	6 (55)
Asian	1 (9)
Unknown	4 (36)
Comorbidities	
CCI, mean	6.7 ± 2.3
Hypertension, no. (%)	8 (73)
Diabetes mellitus, no. (%)	5 (45)
Cardiovascular disease, no. (%)	2 (18)
Concurrent biopsy and treatment, no. (%)	4 (36)
Biopsy pathology, no. (%)	
Papillary, type I	1 (9)
Clear cell RCC	9 (82)
Oncocytic neoplasm	1 (9)
Renal nephrometry score, mean	8.5 ± 1.6
Distance from collecting system, mean, cm	1.0 ± 3.0
Exophytic, no. (%)	1 (9)
Endophytic, no. (%)	6 (55)
Partially exophytic, no. (%)	4 (36)
Tumor size, mean, (range) cm	4.5 ± 1.7 (2.7–8.3)

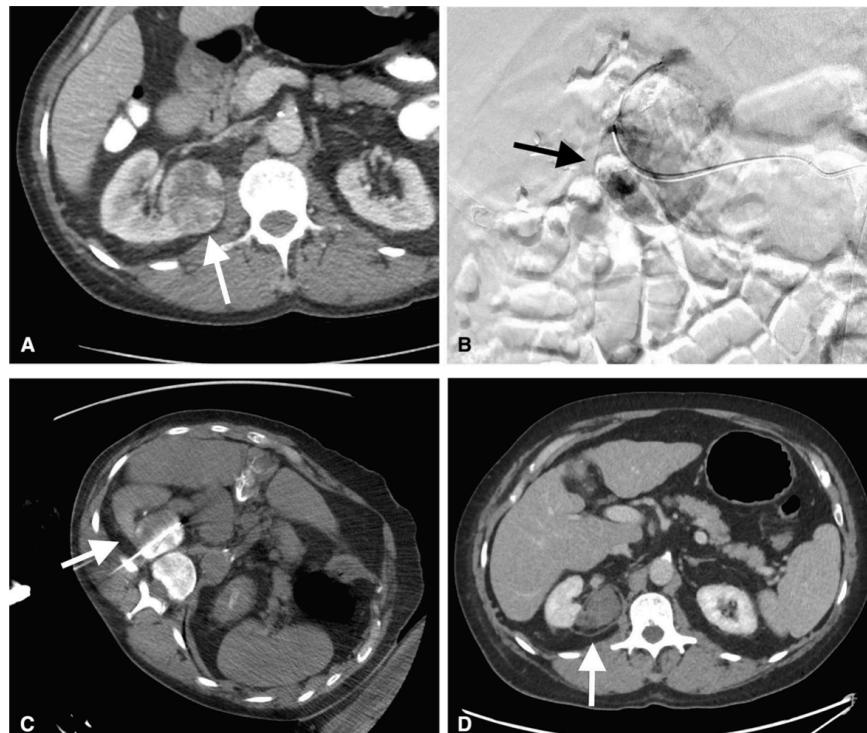

CCI Charleston Comorbidity Index, RCC renal cell carcinoma, BMI Body mass index

Table 2 Treatment parameters and outcomes measures

	n = 11
Parameters	
Anesthesia, no. (%)	
General (embolization and ablation)	3 (27)
MAC (embolization) general (ablation)	2 (18)
MAC (embolization and ablation)	6 (55)
Antennae used, mode (range), no.	2 (1–3)
Treatment parameters	
Power, mean (W)	65 ± 0
Ablation time, mean (range) (min)	14.5 ± 5.9 (10–29)
Hydrodissection, no. (%)	6 (55)
Immediate outcomes	
Complications, no. (%)	
Groin hematoma	1 (9)
Nausea/vomiting	1 (9)
None	9 (82)
Length of stay	
0 day	6 (55)
1 day	5 (45)
Long-term outcomes	
Complications, no. (%)	
None	11 (100)
Recurrence	0 (0)
Follow-up, mean (range) (days)	419.5 (27–747)
Efficacy, no. (%)	
Technical success	11 (100)
Primary technique effectiveness	11 (100)
Total technique effectiveness	11 (100)

MAC monitored anesthesia care

S. LaRussa et al.: Is There a Role for Combination, Single-Session Selective Transarterial...

Fig. 1 Case 1. 53-year-old male with laryngeal squamous cell cancer status post-resection, adjuvant chemotherapy, and radiation therapy, found to have a right hilar renal mass measuring 5.2 cm, clear cell, renal cell carcinoma, stage T1b. **A** Pre-procedure axial CT image of the tumor. **B** Intraoperative fluoroscopic imaging of selective transarterial embolization. **C** Intraoperative axial CT image of percutaneous microwave ablation. **D** Axial CT post-procedure follow-up imaging at 19 months

New Indications

Treatment options for localised renal cell carcinoma of the transplanted kidney

Gloria Motta, Mariano Ferrarese, Luca Lamperti, Dhanai Di Paolo, Nicholas Raison, Marta Perego, Evaldo Favi

- Reported incidence of primary RCC in kidney allografts varies between 0.2% and 0.5%
- Extensive review of the literature focused on epidemiology, clinical presentation, diagnostic workup, staging strategies, tumor characteristics, treatment modalities, and follow-up protocols

“...both [nephron sparing surgery] and focal ablation represent a valuable alternative to graftectomy for kidney transplant recipients”

Motta G, et al. *World J Transplant*. 2020;10(6):147-161.

Thermal Ablation of Renal Cell Carcinoma in Morbidly Obese Patients: Assessment of Technical Results, Procedural Safety, and Oncological Outcomes

Wenhui Zhou, MD, PhD, Sanna Herweld, MD, PhD, Raul N Uppot, MD, Ronald S Arellano, MD

- Patients were stratified into two cohorts on body mass index of $\geq 40 \text{ kg/m}^2$ (morbidly obese) and body mass index of 18.5 to 24.9 kg/m^2 normal weight
- 34 patients were morbidly, and 73 patients were normal weight
- Morbid obesity was associated with longer procedural duration ($p = 0.001$), sedative doses ($p = 0.002$), and radiation exposure ($p = 0.001$) compared to normal-weight patients.
- Hematomas were more prevalent in the morbidly obese than normal body mass index patients ($p = 0.01$)
- Treatment efficacy and local recurrences were comparable to normal-weight individuals ($p = 0.81$, $p = 0.12$, respectively)
- Cancer-related outcomes were equivalent between the two groups based on five years of imaging observation data

Zhou W, et al. *AJR Am J Roentgenol.* 2020;10.2214/AJR.20.23803.

Clinical Investigation—Genitourinary Cancers

Stereotactic Ablative Radiotherapy for $\geq T1b$ Primary Renal Cell Carcinoma: A Report From the International Radiosurgery Oncology Consortium for Kidney (IROCK)

Shankar Siva, PhD, MBBS, FRANZCR, *[†] Rohann J.M. Correa, MD, PhD, [‡]
 Andrew Warner, MSc, [‡] Michael Staehler, MD, PhD, [§]
 Rodney J. Ellis, MD, ^{||} Lee Ponsky, MD, ^{||} Irving D. Kaplan, MD, [#]
 Anand Mahadevan, MD, ** William Chu, MD, MSc, FRCPC, ^{††,‡‡}
 Senthilkumar Gandhidasan, MBBS, FRANZCR, *[‡]
 Anand Swaminath, MD, FRCPC, ^{§§} Hiroshi Onishi, MD, ^{|||}
 Bin S. Teh, MD, FACR, FASTRO, FACRO, ^{¶¶}
 Simon S. Lo, MD, FACR, FASTRO, ^{##} Alexander Muacevic, MD, [§]
 and Alexander V. Louie, MD, MSc, PhD, FRCPC ^{‡,††,‡‡}

- Individual patient data from 9 institutions in Germany, Australia, USA, Canada, and Japan were pooled
- 95 patients were included; median age was 76 years
- Median tumor diameter was 4.9 cm
- Median follow-up was 2.7 years
- Cancer-specific survival, overall survival, and progression-free survival were 96.1%, 83.7%, and 81.0% at 2 years and 91.4%, 69.2%, 64.9% at 4 years, respectively.
- SABR for larger RCC in this older, largely medically inoperable cohort, demonstrated efficacy and tolerability and had modest impact on renal function

SABR appears to be a viable treatment option in this patient population.

Renal biopsies performed before versus during ablation of T1 renal tumors: implications for prevention of overtreatment and follow-up

Christiaan V. Widdershoven¹ · Brigitte M. Aarts^{2,3} · Patricia J. Zondervan¹ · Michaël M. E. L. Henderickx¹ · Elisabeth G. Klompenhouwer² · Otto M. van Delden⁴ · Warner Prevoo^{2,5} · Alexander D. Montauban van Swijndregt⁵ · Reindert J. A. van Moorselaar¹ · Axel Bex^{6,7} · Brunolf W. Lagerveld⁸

Received: 16 April 2020 / Revised: 28 May 2020 / Accepted: 6 June 2020

© The Author(s) 2020

- **Biopsy performed in 714 patients:** 231 patients received biopsy before planned ablation, 483 patients at the time of ablation
- Pathology results before ablation were malignant in 63% (145/231), benign in 20% (46/231), and nondiagnostic in 17% (40/231)
- Pathology results at the time of ablation were malignant in 67.5% (326/483), benign in 16.8% (81/483), and non-diagnostic in 15.7% (76/483) — **leading to a total of 32.5% of ablation of benign or non-diagnostic lesions**
- Patients with a benign biopsy obtained before ablation, 80.4% (37/46) chose not to undergo ablation

Obtaining a biopsy prior to the ablation procedure in a separate session can lower the rate of potentially unnecessary ablations.

New Imaging Techniques

NEW IMAGING TECHNIQUES (S RAIS-BAHRAMI AND K PORTER, SECTION EDITORS)

Contrast-Enhanced Ultrasound in Renal Imaging and Intervention

Michael C. Olson¹ · E. Jason Abel² · Lori Mankowski Gettle¹

Published online: 17 October 2019

- Current evidence suggests that CEUS allows accurate differentiation of solid and cystic renal masses
- Acceptable alternative to either computed tomography (CT) or magnetic resonance imaging (MRI) for characterization of indeterminate renal masses
- CEUS is sensitive and specific for diagnosing residual or recurrent renal cell carcinoma (RCC) following percutaneous ablation

Olson MC, et al. *Curr Urol Rep.* 2019;20(11):73.

Utility of Intraprocedural Contrast-Enhanced CT in Ablation of Renal Masses

Arleen Grewal¹
Satinderpal Singh Khera²
John P. McGahan²
Machelle Wilson³
Thomas W. Loehfelm²
Marc A. Dall'Era⁴
Christopher P. Evans⁴

OBJECTIVE. The purpose of this study was to evaluate the efficacy of radiofrequency ablation (RFA) of renal masses comparing a group who did not undergo intraprocedural CT and a group who did.

MATERIALS AND METHODS. A retrospective review included 45 consecutively registered patients who underwent RFA of renal masses. If an adequate biopsy specimen was not obtained or follow-up was inadequate, the patient was eliminated from review from calculation of primary technical efficacy. The inclusion criterion was having undergone RFA with two cooled-tip electrodes. Baseline demographics (age, body mass index, and sex), renal mass

- 35 patients met inclusion criteria
- 10 patients were in the group who did not, and 25 were in group who did undergo intraprocedural contrast-enhanced CT
- 89% overall technical efficacy rate, with a 96% primary technical efficacy rate in the group who underwent intraprocedural CT compared, with a 70% rate in the group who did not undergo intraprocedural CT

Intraprocedural contrast-enhanced CT yields important information about completeness of ablation during the procedure.

Grewal A, et al. *AJR Am J Roentgenol.* 2020;214(1):122-128.

Thank You