

Innovation in IO: Radiogenomics, Artificial Intelligence, and Machine Learning

Zachary L. Bercu, MD, RPVI

Assistant Division Director, Innovation and Strategy
Division of Interventional Radiology and Image-Guided
Interventions

Emory University School of Medicine

Atlanta, Georgia, USA

zbercu@emory.edu | [@ZachBercuMD](https://twitter.com/ZachBercuMD)

Disclosures

Speakers' Bureau – Terumo Medical Corporation

Grants/Research Support – Co-Investigator, R01 Robotically Steerable Guidewire for Endovascular Interventions, National Institutes of Health (NIH)

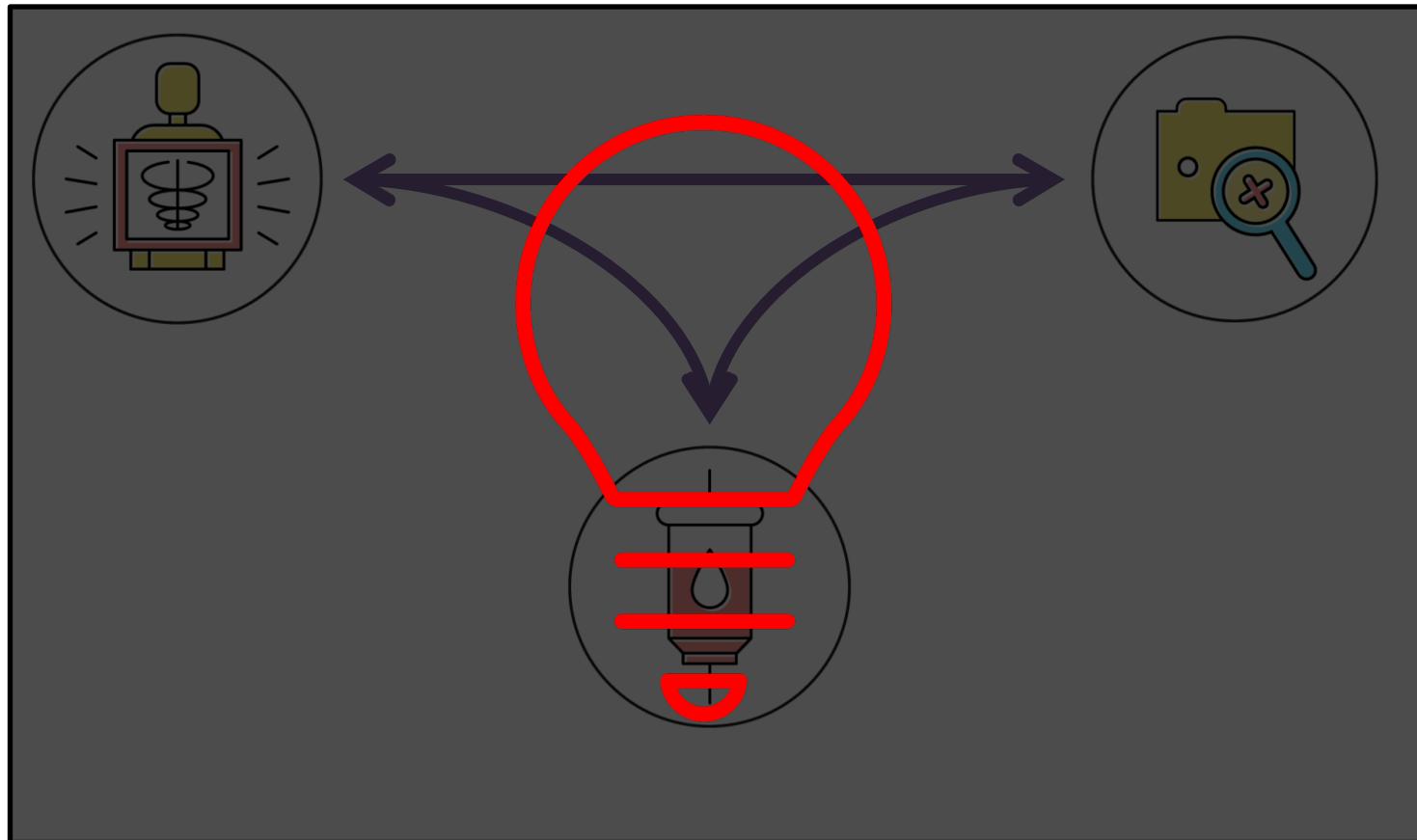
*Brand names are included in this presentation for participant clarification purposes only.
No product promotion should be inferred.*

Radiogenomics: Definitions

- **Genomics:** elucidating the relationship between **complex disease** (such as cancer) and **a person's gene interactions and environment**
- **Radiomics:** extracting **quantitative and qualitative data** from **diagnostic imaging**
- **Radiogenomics:** integrating **genomic, radiomic, and clinical** data for the purposes of **predictive modeling**
- → **Precision oncology** and **targeted therapy**

Balmain A, et al. *Nat Genet*. 2003;33 Suppl:238-44. Lam A, et al. *J Vasc Interv Radiol*. 2018;29(5):706-713. Prasad V, et al. *Lancet Oncol*. 2016;17(2):e81-e86. Slovak R, et al. *Digestive Disease Interventions*, 2020. 04(01): p. 053-059.

Artificial Intelligence: Definitions


- **Artificial Intelligence:** computers **mimicking** human behavior
- **Machine Learning:** AI technique that allows computers the ability to learn **without being specifically programmed** to do so
- **Deep Learning:** type of machine learning using computational efforts over **multilayer neural networks**

<https://blogs.oracle.com/bigdata/difference-ai-machine-learning-deep-learning>

What Are the Challenges?

- **Massive data set**
 - Ideally suited for **artificial intelligence** and **machine learning**
- **Data quality & validity**
 - **Signal** versus **noise**
 - **Quantitative data**
 - **Qualitative data**
 - → **Standardization** essential

How Does This Work?

Examples – Hepatocellular Carcinoma

- **Microvascular invasion** more likely with CT findings of:
 - Internal arteries
 - Hypodense halos
 - Non-smooth tumor margins
 - Peritumoral enhancement on CT
- **Post-TACE complete response** associated with:
 - Tumoral heterogeneity
 - Tumoral attenuation
- **Association ≠ Causation**

Renzulli M, et al. *Radiology*. 2016;279(2):432-42. Park HJ, et al. *AJR Am J Roentgenol*. 2017;209(4):W211-W220.

Examples – Metastatic Neuroendocrine Tumor

GASTROINTESTINAL (NONCOLORECTAL) CANCER

Evaluation of Ki67 and other predictors of survival in metastatic neuroendocrine tumor (NET) to the liver treated with Y90 radioembolization.

[Julie Cronan](#), [Bernadette White](#), [Robert Mitchell Ermentrout](#), [Zachary Louis Bercu](#), [Walid Labib Shaib](#), [Janice Newsome](#), [Nima Kokabi](#)

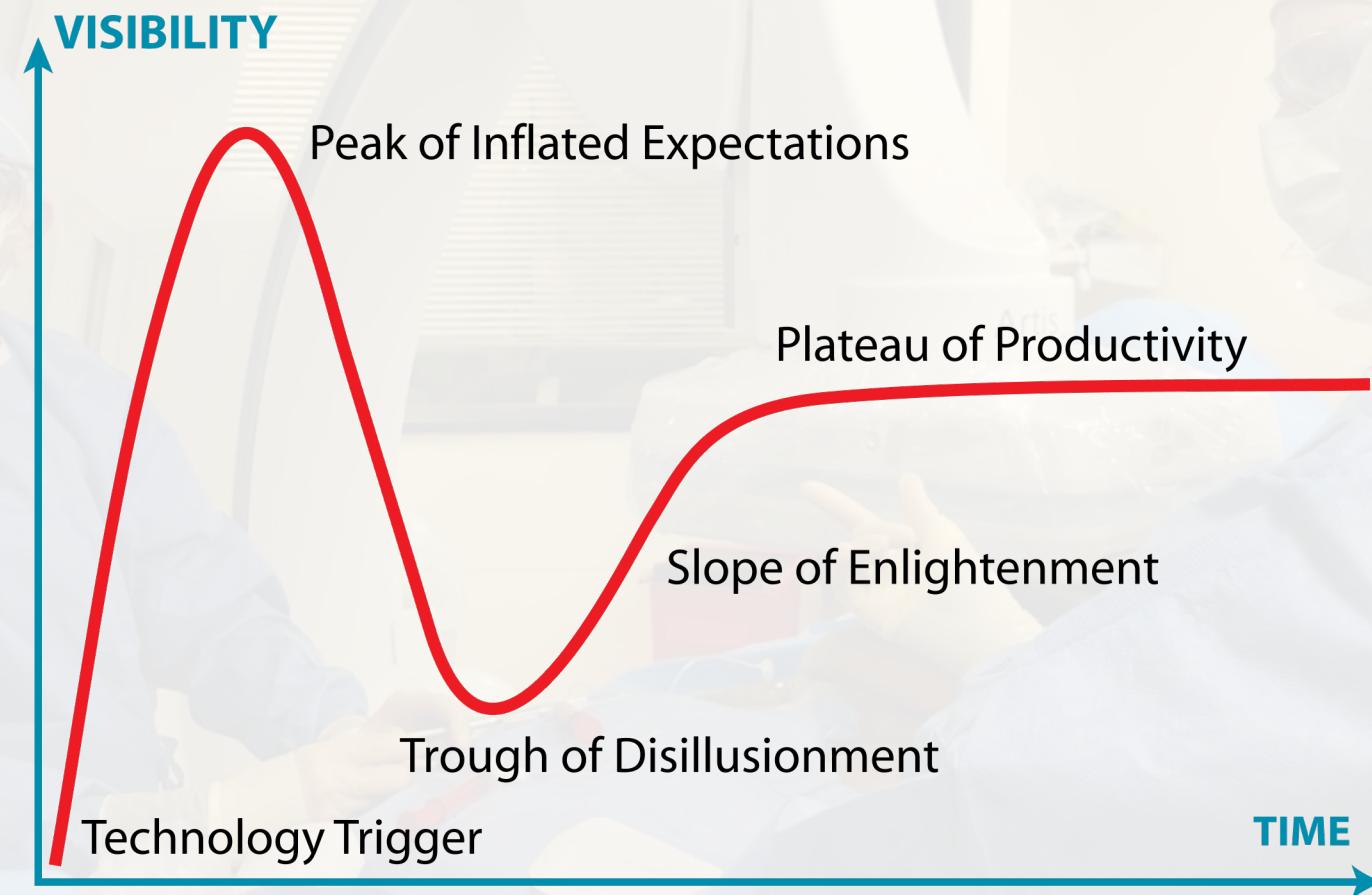
Emory University School of Medicine, Atlanta, GA; Emory University, School of Medicine, Atlanta, GA; Winship Cancer Institute, Emory University, Atlanta, GA; Interventional Radiology and Image Guided Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA

Examples – Metastatic Colorectal Cancer

Cardiovasc Intervent Radiol (2020) 43:1006–1014
<https://doi.org/10.1007/s00270-020-02463-z>

CLINICAL INVESTIGATION

INTERVENTIONAL ONCOLOGY


Impact of Genomic Mutation and Timing of Y90 Radioembolization in Colorectal Liver Metastases

Alexander Dabrowiecki¹ · Tina Sankhla¹ · Kaitlin Shinn¹ · Zachary L. Bercu¹ ·
Mitchell Ermentrout¹ · Walid Shaib² · Kenneth Cardona³ · Janice Newsome¹ ·
Nima Kokabi¹

Role of the Interventional Radiologist

- **H&P** → facilitates determination of **environmental factors**
- **Imaging** → determines **radiomic phenotype**
 - Pre-procedure (CT, MRI, PET)
 - Intraprocedure (angiography, CBCT, newer technologies)
- **Tissue** → **biopsy** (histopathology) is critical!
- **Follow-Up** →
 - What happened to the **tumor**?
 - What happened to the **patient**?
 - What happened to the **patient's quality of life**???

Where Are We?

https://upload.wikimedia.org/wikipedia/commons/9/94/Gartner_Hype_Cycle.svg

Take Home Points

- **IRs are just at the beginning of this**
- **Tissue biopsy is crucial**
- Need for **intentionality** and **thoughtfulness**
 - **Standardization**
 - **Focus on achievable outcomes**

Thank You

<https://winshipcancer.emory.edu/images/location-imgs/emory-university-hospital-tower.jpg>

https://www.midtownatl.com/_files/images/emory.jpg

